Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 381(6658): 693-699, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37561880

RESUMO

The oldest known hominin remains in Europe [~1.5 to ~1.1 million years ago (Ma)] have been recovered from Iberia, where paleoenvironmental reconstructions have indicated warm and wet interglacials and mild glacials, supporting the view that once established, hominin populations persisted continuously. We report analyses of marine and terrestrial proxies from a deep-sea core on the Portugese margin that show the presence of pronounced millennial-scale climate variability during a glacial period ~1.154 to ~1.123 Ma, culminating in a terminal stadial cooling comparable to the most extreme events of the last 400,000 years. Climate envelope-model simulations reveal a drastic decrease in early hominin habitat suitability around the Mediterranean during the terminal stadial. We suggest that these extreme conditions led to the depopulation of Europe, perhaps lasting for several successive glacial-interglacial cycles.


Assuntos
Hominidae , Animais , Clima , Ecossistema , Temperatura Baixa , Mudança Climática
2.
Nat Commun ; 13(1): 7885, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550174

RESUMO

The Paleocene-Eocene Thermal Maximum (PETM) was an abrupt global warming event associated with a large injection of carbon into the ocean-atmosphere system, as evidenced by a diagnostic carbon isotope excursion (CIE). Evidence also suggests substantial hydrologic perturbations, but details have been hampered by a lack of appropriate proxies. To address this shortcoming, here we isolate and measure the isotopic composition of hydroxyl groups (OH-) in clay minerals from a highly expanded PETM section in the North Sea Basin, together with their bulk oxygen isotope composition. At this location, we show that hydroxyl O- and H-isotopes are less influenced than bulk values by clay compositional changes due to mixing and/or inherited signals and thus better track hydrologic variability. We find that clay OH- hydrogen-isotope values (δ2HOH) decrease slowly prior to the PETM and then abruptly by ∼8‰ at the CIE onset. Coincident with an increase in relative kaolinite content, this indicates increased rainfall and weathering and implies an enhanced hydrologic cycle response to global warming, particularly during the early stages of the PETM. Subsequently, δ2HOH returns to pre-PETM values well before the end of the CIE, suggesting hydrologic changes in the North Sea were short-lived relative to carbon-cycle perturbations.

3.
Science ; 377(6606): 654-659, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35926027

RESUMO

The oxygen concentrations of oceanic deep-water and atmospheric carbon dioxide (pCO2) are intrinsically linked through organic carbon remineralization and storage as dissolved inorganic carbon in the deep sea. We present a high-resolution reconstruction of relative changes in oxygen concentration in the deep North Atlantic for the past 1.5 million years using the carbon isotope gradient between epifaunal and infaunal benthic foraminifera species as a proxy for paleo-oxygen. We report a significant (>40 micromole per kilogram) reduction in glacial Atlantic deep-water oxygenation at ~960 thousand to 900 thousand years ago that coincided with increased continental ice volume and a major change in ocean thermohaline circulation. Paleo-oxygen results support a scenario of decreasing deep-water oxygen concentrations, increased respired carbon storage, and a reduction in glacial pCO2 across the Middle Pleistocene Transition.


Assuntos
Camada de Gelo , Oxigênio , Água do Mar , Dióxido de Carbono/análise , Foraminíferos , Camada de Gelo/química , Camada de Gelo/microbiologia , Oxigênio/análise , Água do Mar/química , Água do Mar/microbiologia
4.
Nat Commun ; 13(1): 3911, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853849

RESUMO

The influence of climate change on civil conflict and societal instability in the premodern world is a subject of much debate, in part because of the limited temporal or disciplinary scope of case studies. We present a transdisciplinary case study that combines archeological, historical, and paleoclimate datasets to explore the dynamic, shifting relationships among climate change, civil conflict, and political collapse at Mayapan, the largest Postclassic Maya capital of the Yucatán Peninsula in the thirteenth and fourteenth centuries CE. Multiple data sources indicate that civil conflict increased significantly and generalized linear modeling correlates strife in the city with drought conditions between 1400 and 1450 cal. CE. We argue that prolonged drought escalated rival factional tensions, but subsequent adaptations reveal regional-scale resiliency, ensuring that Maya political and economic structures endured until European contact in the early sixteenth century CE.


Assuntos
Mudança Climática , Secas , Aclimatação , Arqueologia
5.
Rapid Commun Mass Spectrom ; 35(10): e9078, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33660313

RESUMO

RATIONALE: Oxygen and hydrogen isotopes are important tools for studying the modern and past hydrological cycle. Previous evaporation experiments used episodic measurement of liquid and/or vapor or did not measure all isotopologues of water. Here, we describe an evaporation experimental system that allows all isotopologues of liquid and water vapor to be measured simultaneously and near-continuously at high precision using cavity ring-down laser spectroscopy (CRDS). METHODS: Evaporating liquid is periodically sampled from a closed recirculating loop by a syringe pump that delivers a constant supply of water to the vaporizer, achieving a water vapor concentration of 20,000 ppmV H2 O (±132, 1σ). Vapor is sampled directly from the evaporation chamber. Isotope ratios are measured simultaneously with a Picarro L2140-i CRDS instrument. RESULTS: For liquid measurements, Allan variance analysis indicates an optimum data collection window of 34 min for oxygen isotopes and 27 min for hydrogen isotopes. During these periods, the mean standard error is ±0.0081‰ for δ17 O values, ±0.0081‰ for δ18 O values, and ±0.019‰ for δ2 H values. For the derived parameters 17 O-excess and d-excess, the standard error of the mean is 5.8 per meg and 0.07‰, respectively. For the vapor phase a 12.5 min data window for all isotopologues results in a mean standard error of ±0.012‰ for δ17 O values, ±0.011‰ for δ18 O values, and ±0.023‰ for δ2 H values. For the derived parameters, the standard error of the mean is 9.2 per meg for 17 O-excess and 0.099‰ for d-excess. These measurements result in consistently narrow 95% confidence limits for the slopes of ln(δ17 O + 1) vs ln(δ18 O + 1) and ln(δ2 H + 1) vs ln(δ18 O + 1). CONCLUSIONS: The experimental method permits measurement of fractionation of triple-oxygen and hydrogen isotopes of evaporating water under varying controlled conditions at high precision. Application of this method will be useful for testing theoretical models of evaporation and conducting experiments to simulate evaporation and isotopic equilibration in natural systems.

6.
Sci Rep ; 10(1): 17256, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037258

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Sci Rep ; 10(1): 14705, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908198

RESUMO

Carbonate cave deposits (speleothems) have been used widely for paleoclimate reconstructions; however, few studies have examined the utility of other speleothem-forming minerals for this purpose. Here we demonstrate for the first time that stable isotopes (δ17O, δ18O and δD) of structurally-bound gypsum (CaSO4·2H2O) hydration water (GHW) can be used to infer paleoclimate. Specifically, we used a 63 cm-long gypsum stalactite from Sima Blanca Cave to reconstruct the climate history of SE Spain from ~ 800 BCE to ~ 800 CE. The gypsum stalactite indicates wet conditions in the cave and humid climate from ~ 200 BCE to 100 CE, at the time of the Roman Empire apogee in Hispania. From ~ 100 CE to ~ 600 CE, evaporation in the cave increased in response to regional aridification that peaked at ~ 500-600 CE, roughly coinciding with the transition between the Iberian Roman Humid Period and the Migration Period. Our record agrees with most Mediterranean and Iberian paleoclimate archives, demonstrating that stable isotopes of GHW in subaerial gypsum speleothems are a useful tool for paleoclimate reconstructions.

8.
Science ; 369(6509): 1383-1387, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913105

RESUMO

Much of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states-Hothouse, Warmhouse, Coolhouse, Icehouse-are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.

9.
Science ; 367(6485): 1485-1489, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32217728

RESUMO

Disrupting North Atlantic Deep Water (NADW) ventilation is a key concern in climate projections. We use (sub)centennially resolved bottom water δ13C records that span the interglacials of the last 0.5 million years to assess the frequency of and the climatic backgrounds capable of triggering large NADW reductions. Episodes of reduced NADW in the deep Atlantic, similar in magnitude to glacial events, have been relatively common and occasionally long-lasting features of interglacials. NADW reductions were triggered across the range of recent interglacial climate backgrounds, which demonstrates that catastrophic freshwater outburst floods were not a prerequisite for large perturbations. Our results argue that large NADW disruptions are more easily achieved than previously appreciated and that they occurred in past climate conditions similar to those we may soon face.

10.
Science ; 367(6483): 1235-1239, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32165584

RESUMO

Radiometric dating of glacial terminations over the past 640,000 years suggests pacing by Earth's climatic precession, with each glacial-interglacial period spanning four or five cycles of ~20,000 years. However, the lack of firm age estimates for older Pleistocene terminations confounds attempts to test the persistence of precession forcing. We combine an Italian speleothem record anchored by a uranium-lead chronology with North Atlantic ocean data to show that the first two deglaciations of the so-called 100,000-year world are separated by two obliquity cycles, with each termination starting at the same high phase of obliquity, but at opposing phases of precession. An assessment of 11 radiometrically dated terminations spanning the past million years suggests that obliquity exerted a persistent influence on not only their initiation but also their duration.

11.
Science ; 363(6431): 1080-1084, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30846597

RESUMO

From 1.25 million to 700,000 years ago, the ice age cycle deepened and lengthened from 41,000- to 100,000-year periodicity, a transition that remains unexplained. Using surface- and bottom-dwelling foraminifera from the Antarctic Zone of the Southern Ocean to reconstruct the deep-to-surface supply of water during the ice ages of the past 1.5 million years, we found that a reduction in deep water supply and a concomitant freshening of the surface ocean coincided with the emergence of the high-amplitude 100,000-year glacial cycle. We propose that this slowing of deep-to-surface circulation (i.e., a longer residence time for Antarctic surface waters) prolonged ice ages by allowing the Antarctic halocline to strengthen, which increased the resistance of the Antarctic upper water column to orbitally paced drivers of carbon dioxide release.

12.
Paleoceanogr Paleoclimatol ; 34(1): 63-78, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30854509

RESUMO

This study identifies temporal biases in the radiocarbon ages of the planktonic foraminifera species Globigerina bulloides and Globigerinoides ruber (white) in a sediment core from the SW Iberian margin (so-called Shackleton site). Leaching of the outer shell and measurement of the radiocarbon content of both the leachate and leached sample enabled us to identify surface contamination of the tests and its impact on their 14C ages. Incorporation of younger radiocarbon on the outer shell affected both species and had a larger impact downcore. Interspecies comparison of the 14C ages of the leached samples reveal systematic offsets with 14C ages for G. ruber being younger than G. bulloides ages during the last deglaciation and part of the Early and mid-Holocene. The greatest offsets (up to 1,030 years) were found during Heinrich Stadial 1, the Younger Dryas, and part of the Holocene. The potential factors differentially affecting these two planktonic species were assessed by complementary 14C, oxygen and carbon isotopes, and species abundance determinations. The coupled effect of bioturbation with changes in the abundance of G. ruber is invoked to account for the large age offsets. Our results highlight that 14C ages of planktonic foraminifera might be largely compromised even in settings characterized by high sediment accumulation rates. Thus, a careful assessment of potential temporal biases must be performed prior to using 14C ages for paleoclimate investigations or radiocarbon calibrations (e.g., marine calibration curve Marine13, Reimer et al., 2013, https://doi.org/10.2458/azu_js_rc.55.16947).

13.
Geochem Geophys Geosyst ; 19(9): 2895-2914, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30443200

RESUMO

About a decade after its introduction, the field of carbonate clumped isotope thermometry is rapidly expanding because of the large number of possible applications and its potential to solve long-standing questions in Earth Sciences. Major factors limiting the application of this method are the very high analytical precision required for meaningful interpretations, the relatively complex sample preparation procedures, and the mass spectrometric corrections needed. In this paper we first briefly review the evolution of the analytical and standardization procedures and discuss the major remaining sources of uncertainty. We propose that the use of carbonate standards to project the results to the carbon dioxide equilibrium scale can improve interlaboratory data comparability and help to solve long-standing discrepancies between laboratories and temperature calibrations. The use of carbonates reduces uncertainties related to gas preparation and cleaning procedures and ensures equal treatment of samples and standards. We present a set of carbonate standards of diverse composition, discuss how they can be used to correct for mass spectrometric biases, and demonstrate that their use significantly improves the comparability among four laboratories. We propose that the use of these standards or of a similar set of carbonate standards will improve the comparability of data across laboratories.

14.
Nat Commun ; 9(1): 4690, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30410023

RESUMO

Ocean dynamics served an important role during past dramatic climate changes via impacts on deep-ocean carbon storage. Such changes are recorded in sedimentary proxies of hydrographic change on continental margins, which lie at the ocean-atmosphere-earth interface. However, interpretations of these records are challenging, given complex interplays among processes delivering particulate material to and from ocean margins. Here we report radiocarbon (14C) signatures measured for organic carbon in differing grain-size sediment fractions and foraminifera in a sediment core retrieved from the southwest Iberian margin, spanning the last ~25,000 yr. Variable differences of 0-5000 yr in radiocarbon age are apparent between organic carbon in differing grain-sizes and foraminifera of the same sediment layer. The magnitude of 14C differences co-varies with key paleoceanographic indices (e.g., proximal bottom-current density gradients), which we interpret as evidence of Atlantic-Mediterranean seawater exchange influencing grain-size specific carbon accumulation and translocation. These findings underscore an important link between regional hydrodynamics and interpretations of down-core sedimentary proxies.

15.
Sci Rep ; 8(1): 11711, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076331

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

16.
Science ; 361(6401): 498-501, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30072537

RESUMO

The demise of Lowland Classic Maya civilization during the Terminal Classic Period (~800 to 1000 CE) is a well-cited example of how past climate may have affected ancient societies. Attempts to estimate the magnitude of hydrologic change, however, have met with equivocal success because of the qualitative and indirect nature of available climate proxy data. We reconstructed the past isotopic composition (δ18O, δD, 17O-excess, and d-excess) of water in Lake Chichancanab, Mexico, using a technique that involves isotopic analysis of the structurally bound water in sedimentary gypsum, which was deposited under drought conditions. The triple oxygen and hydrogen isotope data provide a direct measure of past changes in lake hydrology. We modeled the data and conclude that annual precipitation decreased between 41 and 54% (with intervals of up to 70% rainfall reduction during peak drought conditions) and that relative humidity declined by 2 to 7% compared to present-day conditions.


Assuntos
Civilização/história , Secas/história , História Antiga , Lagos , México
17.
Sci Rep ; 8(1): 4225, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523797

RESUMO

Today the desert margins of northwest India are dry and unable to support large populations, but were densely occupied by the populations of the Indus Civilization during the middle to late Holocene. The hydroclimatic conditions under which Indus urbanization took place, which was marked by a period of expanded settlement into the Thar Desert margins, remains poorly understood. We measured the isotopic values (δ18O and δD) of gypsum hydration water in paleolake Karsandi sediments in northern Rajasthan to infer past changes in lake hydrology, which is sensitive to changing amounts of precipitation and evaporation. Our record reveals that relatively wet conditions prevailed at the northern edge of Rajasthan from ~5.1 ± 0.2 ka BP, during the beginning of the agricultural-based Early Harappan phase of the Indus Civilization. Monsoon rainfall intensified further between 5.0 and 4.4 ka BP, during the period when Indus urban centres developed in the western Thar Desert margin and on the plains of Haryana to its north. Drier conditions set in sometime after 4.4 ka BP, and by ~3.9 ka BP an eastward shift of populations had occurred. Our findings provide evidence that climate change was associated with both the expansion and contraction of Indus urbanism along the desert margin in northwest India.


Assuntos
Civilização , Chuva , Estações do Ano , Urbanização , Vento , Clima , Índia
18.
Nature ; 547(7661): 43-48, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28682333

RESUMO

Glaciological and oceanographic observations coupled with numerical models show that warm Circumpolar Deep Water (CDW) incursions onto the West Antarctic continental shelf cause melting of the undersides of floating ice shelves. Because these ice shelves buttress glaciers feeding into them, their ocean-induced thinning is driving Antarctic ice-sheet retreat today. Here we present a multi-proxy data based reconstruction of variability in CDW inflow to the Amundsen Sea sector, the most vulnerable part of the West Antarctic Ice Sheet, during the Holocene epoch (from 11.7 thousand years ago to the present). The chemical compositions of foraminifer shells and benthic foraminifer assemblages in marine sediments indicate that enhanced CDW upwelling, controlled by the latitudinal position of the Southern Hemisphere westerly winds, forced deglaciation of this sector from at least 10,400 years ago until 7,500 years ago-when an ice-shelf collapse may have caused rapid ice-sheet thinning further upstream-and since the 1940s. These results increase confidence in the predictive capability of current ice-sheet models.


Assuntos
Congelamento , Aquecimento Global/história , Temperatura Alta , Camada de Gelo , Modelos Teóricos , Água do Mar/análise , Vento , Regiões Antárticas , Foraminíferos/química , Foraminíferos/isolamento & purificação , Sedimentos Geológicos/análise , Aquecimento Global/estatística & dados numéricos , História do Século XIX , História do Século XX , História do Século XXI , História Antiga , Oceanos e Mares , Reprodutibilidade dos Testes , Água do Mar/química
19.
Sci Rep ; 7(1): 4626, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676721

RESUMO

The paleoclimatic sensitivity to atmospheric greenhouse gases (GHGs) has recently been suggested to be nonlinear, however a GHG threshold value associated with deglaciation remains uncertain. Here, we combine a new sea surface temperature record spanning the last 360,000 years from the southern Western Pacific Warm Pool with records from five previous studies in the equatorial Pacific to document the nonlinear relationship between climatic sensitivity and GHG levels over the past four glacial/interglacial cycles. The sensitivity of the responses to GHG concentrations rises dramatically by a factor of 2-4 at atmospheric CO2 levels of >220 ppm. Our results suggest that the equatorial Pacific acts as a nonlinear amplifier that allows global climate to transition from deglacial to full interglacial conditions once atmospheric CO2 levels reach threshold levels.

20.
Proc Natl Acad Sci U S A ; 114(15): 3867-3872, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348211

RESUMO

Understanding the stability of the early Antarctic ice cap in the geological past is of societal interest because present-day atmospheric CO2 concentrations have reached values comparable to those estimated for the Oligocene and the Early Miocene epochs. Here we analyze a new high-resolution deep-sea oxygen isotope (δ18O) record from the South Atlantic Ocean spanning an interval between 30.1 My and 17.1 My ago. The record displays major oscillations in deep-sea temperature and Antarctic ice volume in response to the ∼110-ky eccentricity modulation of precession. Conservative minimum ice volume estimates show that waxing and waning of at least ∼85 to 110% of the volume of the present East Antarctic Ice Sheet is required to explain many of the ∼110-ky cycles. Antarctic ice sheets were typically largest during repeated glacial cycles of the mid-Oligocene (∼28.0 My to ∼26.3 My ago) and across the Oligocene-Miocene Transition (∼23.0 My ago). However, the high-amplitude glacial-interglacial cycles of the mid-Oligocene are highly symmetrical, indicating a more direct response to eccentricity modulation of precession than their Early Miocene counterparts, which are distinctly asymmetrical-indicative of prolonged ice buildup and delayed, but rapid, glacial terminations. We hypothesize that the long-term transition to a warmer climate state with sawtooth-shaped glacial cycles in the Early Miocene was brought about by subsidence and glacial erosion in West Antarctica during the Late Oligocene and/or a change in the variability of atmospheric CO2 levels on astronomical time scales that is not yet captured in existing proxy reconstructions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...